Arrow-right Camera


Electric jolts to the brain help alertness, learning

Staff Sgt. William Raybon is fitted with electrodes on his head and forearm Feb. 28 at Wright-Patterson Air Force Research Laboratory in Ohio.
Staff Sgt. William Raybon is fitted with electrodes on his head and forearm Feb. 28 at Wright-Patterson Air Force Research Laboratory in Ohio.

Military-tested technique could be alternative to drugs

WRIGHT-PATTERSON AIR FORCE BASE, Ohio – Tired troops may get a jolt out of a late-night caffeine boost, but researchers at the Air Force Research Laboratory say they may have found a better way to fight fatigue.

A mild electric stimulation has proven in a research study of about 175 volunteers to be more effective for longer times than caffeine, said R. Andy McKinley, a 711th Human Performance Wing biomedical engineer in the Human Effectiveness Directorate.

“We found this really helps keep your attention on task,” McKinley said.

Imagery analysts, cyber and unmanned aerial vehicle operators, could be more alert with long hours staring at computer screens, and research findings suggest students could train up to twice as fast or more, researchers said.

“This would be a real benefit if we can accelerate that learning time, and our results have been really promising in that,” said Lindsey McIntire, a Human Performance Wing project research psychologist.

The technology could find its way into control rooms and classrooms within five years if the Air Force pursues the new fatigue-fighting method, McKinley said.

“I think we’re past the proof of concept phase and we’re trying to move toward something we can apply,” he said.

The technique is called transcranial direct-current stimulation. Short-term tests have shown few side effects, he said. But more research into the Air Force initiative, called Non-Invasive Brain Stimulation and tested on active-duty airmen at Wright-Patterson, is needed prior to fielding it.

“Basically, we need to understand what the effects will be of using this every day,” McKinley said.

The Wright State Research Institute expects to start similar experiments on student volunteers and airmen this spring in collaboration with Air Force research, said Michael Weisend, a Wright State senior research scientist in the neuromedical imaging program.

“We will start to move this technology into more real-world situations,” he said.

The mild stimulation technique, narrowly focused on the brain, could be an alternative to pharmaceutical drugs spreading throughout the body and impacting other organs, he said.

“The normal solution to lots of problems we have with our brain is to take a drug,” he said.

The 711th Human Performance Wing has partnered with George Mason University, Georgia Institute of Technology and Duke University in the stimulation studies, also.

In a small lab room last week inside the U.S. Air Force School of Aerospace Medicine, Staff Sgt. William Raybon has one set of electrodes, wrapped in surgical mesh, on his right bicep and a second set on the left side of his head over the dorsolateral prefrontal cortex.

Looking at a computer screen blanketed with hollowed-out red squares and blue circles against a field of white, he’ll tap a key on the keyboard every time he spots a red circle. The screen changes every seven seconds while two small cameras under the screen track his eye movements.

A person wearing the electrodes may briefly feel a slight tingling, itchy or warm sensation, McKinley said. Seven percent of the research subjects have complained of a slight headache afterward, he said.

It was at least the fourth time Raybon participated in the experiment, one the medical lab technician said he volunteered for out of curiosity. He said he has had no side effects.

In a prior experiment, he stayed awake for 30 hours, then had the stimulation to test his response to perform tasks.

Afterward, the airman “had no fatigue at all, really.”

“I was shocked by that because I’m not a morning person,” he said.

The Air Force study showed people who stayed awake 30 hours and then had a mild electric stimulation for about half an hour stayed alert another six hours compared to an hour or two after consuming caffeine, McKinley said. They had a better mood, were less drowsy and more energized, researchers said.

“Caffeine had a benefit initially but it went away pretty quick,” he said.


Top stories in Nation/World

High winds delay opening of Coachella festival camping

new  Gusty winds swept the mountains and deserts of Southern California on Thursday, forcing managers of the Coachella Valley Music and Arts Festival to close campgrounds where thousands of fans were heading for the annual event’s second weekend.