Arrow-right Camera

The Spokesman-Review Newspaper The Spokesman-Review

Sunday, February 23, 2020  Spokane, Washington  Est. May 19, 1883
Rain 46° Rain
News >  Weather

The signal of human-caused climate change has emerged in every day weather, study finds

Gene Walter, of Crescent, Iowa, drives his truck through a flooded road that sits between flooded fields in Crescent, Iowa, on June 27, 2019.  The 2019 record rainfall and devastating flooding are forcing tough decisions about the future of farming in the face of climate change. Like many in the water-weary Midwest, Walter doesn’t know if climate change was responsible for the second major flood in nine years or the increasingly frequent torrential rains that dump more water in an hour than he used to see in days. (Nati Harnik / Associated Press)
Gene Walter, of Crescent, Iowa, drives his truck through a flooded road that sits between flooded fields in Crescent, Iowa, on June 27, 2019. The 2019 record rainfall and devastating flooding are forcing tough decisions about the future of farming in the face of climate change. Like many in the water-weary Midwest, Walter doesn’t know if climate change was responsible for the second major flood in nine years or the increasingly frequent torrential rains that dump more water in an hour than he used to see in days. (Nati Harnik / Associated Press)
By Andrew Freedman Washington Post

For the first time, scientists have detected the “fingerprint” of human-induced climate change on daily weather patterns at the global scale. If verified by subsequent work, the findings, published Thursday in Nature Climate Change, would upend the long-established narrative that daily weather is distinct from long-term climate change.

The study’s results also imply that research aimed at assessing the human role in contributing to extreme weather events, such as heat waves and floods, may be underestimating the contribution.

The new study, which was in part motivated by President Donald Trump’s tweets about how a cold day in one particular location disproves global warming, uses statistical techniques and climate model simulations to evaluate how daily temperatures and humidity vary around the world. Scientists compared the spatial patterns of these variables with what physical science shows is expected due to climate change.

The study concludes that the spatial patterns of global temperature and humidity are, in fact, distinguishable from natural variability, and have a human component to them. Going further, the study concludes that the long-term climate trend in global average temperature can be predicted if you know a single day’s weather information worldwide.

According to study co-author Reto Knutti of ETH Zurich, the research alters what we can say about how weather and climate change are connected. “We’ve always said when you look at weather that’s not the same as climate,” he said. “That’s still true locally, if you are in one particular place and you only know the weather right now, right here, there isn’t much you can say.”

However, on a global scale, that is no longer true, Knutti said. “Global mean temperature on a single day is already quite a bit shifted. You can see this human fingerprint in any single moment.”

“Weather is climate change if you look over the whole globe,” he said.

The research uses the techniques applied in other so-called “detection and attribution” studies that have sought to identify the signal of human-caused climate change in longer-term changes at the global level, such as the seasonal temperature cycle of the planet or heating of the oceans.

The authors, from research institutions in Switzerland and Norway, use machine learning to estimate how the patterns of temperature and moisture at daily, monthly and annual timescales relate to two important climate change metrics: Global average surface temperatures and the energy imbalance of the planet. Increasing amounts of greenhouse gases in the atmosphere are causing the Earth to hold in more of the sun’s energy, leading to an energy surplus.

The researchers then used machine-learning techniques to detect a global fingerprint of human-caused climate change from the relationships between the weather and global warming metrics, and compare it with historical weather data.

By doing this, scientists were able to determine the signal of human-caused global warming from any single day of global weather observations since 2012. When looking at annual data, the human-caused climate signal emerged in 1999, the study found.

In what one outside expert, Michael Wehner of Lawrence Berkeley National Laboratory, termed a “profoundly disturbing” result, the study found the global warming fingerprint remained present even when the signal from the global average temperature trend was removed.

“This is telling us that anthropogenic climate change has become so large that it exceeds even daily weather variability at the global scale,” Wehner said in an email. “This is disturbing as the Earth is on track for significantly more warming in even the most optimistic future scenarios.”

According to Stanford University climate scientist Noah Diffenbaugh, the new study advances our understanding of climate change’s effects. Diffenbaugh was not involved in the new research.

“The fact that the influence of global warming can now be seen in the daily weather around the world – which in some ways is the noisiest manifestation – is another clear sign of how strong the signal of climate change has become,” he said in an email.

“This study provides important new evidence that climate change is influencing the conditions that people and ecosystems are experiencing every day, all around the world.”

The research may provide a bridge between two approaches to detecting the human fingerprint on the changing climate. One of these techniques focuses on long-term trends, while another looks at regionally specific, shorter-term extreme weather events. Until this new study, there was no way to integrate these two specialties, the new study may provide a way to bridge the gap.

“Because it’s not possible to disentangle the fingerprint of climate change from natural internal variability for any particular extreme event, these studies use model simulations to estimate how the probabilities of such ‘class of events’ may have changed under anthropogenic climate change,” said study lead author Sebastian Sippel, of the Institute for Atmospheric and Climate Science at ETH Zurich. “Our study could be seen also as linking these two “sides of the same coin,” he said.

The study contains uncertainties, particularly when it comes to the accuracy of computer models in simulating various climate cycles. It also does not consider the importance of other factors that influence the climate, such as land-use change and human-made and volcanic aerosols.

Knutti notes that the use of machine learning techniques, which can help tease out patterns in large data sets, can introduce uncertainties as well, though he’s confident those were minimized here.

Sippel said technically the new study does not attribute the climate change trends they found completely to human activities, but that there is most likely no other plausible explanation.

“We know from many other studies that the warming in the last 40 years is almost entirely human,” he said, adding that this is the subject of follow-up work.

Subscribe to the Morning Review newsletter

Get the day’s top headlines delivered to your inbox every morning by subscribing to our newsletter.

You have been successfully subscribed!
There was a problem subscribing you to the newsletter. Double check your email and try again, or email webteam@spokesman.com